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ABSTRACT
The aims of this paper are to provide further background description and present and implement a
modal approach, the latter assisting in providing improved understanding of the noise transmission
phenomenon in buildings. The derivation and numerical examples presented in this paper show how
transmission efficiency is affected by room geometry. The transmission of sound between similar or
dissimilar rooms, e.g. for the latter consider rooms attached to corridors, can equally be predicted
using the Modal approach. The narrowband results of analyses were converted to one-third octave
band spectra, to make comparisons with other data possible. Finally, a general discussion, based on the
findings of the results obtained, is presented with some observations concerning potential
improvements that can be considered.

1.  INTRODUCTION

A detailed review of interior sound field problems was presented by Dowell [1], and others [2-3], who
investigated acoustic-structural coupled systems. Recently Osipov [4] evaluated some numerical
examples in order to verify the influence of the dimensions of rooms and partitions on sound
transmission. The noise reduction of the system due to resonant and nonresonant coupling involving
modal behaviour and spatial fluid-structural coupling is predicted. The model can include (i) different
room sizes and absorption, including narrow corridors coupled to rectangular spaces; (ii)small
partitions - a partition that does not cover the whole of the common wall and (iii)Non-diffuse
excitation in the source room.

2.  THEORETICAL MODEL FOR THE COUPLED SYSTEM

Figure 1a: Model 1: Two rooms (height=2.0m)
separated by a common wall (2m x 2m).

Figure 1b: Model 2: Two rooms (height = 2.0
m) separated by a common wall (2m x 2m)
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Room-panel-room systems (Figures 2.1 and 2.2) are analysed by modal models based on a set of
integro-differential equations for the interaction between a flexible plate and enclosed fluids [1]. The
structural motion has been expressed as a summation of the response in the in vacuo modes öp driven
by the fluid loading. The acoustic-field is approximated by the summation of the uncoupled acoustic
modes ψn of the fluid volume enclosed by rigid walls. The acoustic modes were excited by a unit
harmonic volume velocity placed inside the source room. The system response is obtained by solving
the following coupled equations [7]

Eq. 1a

Eq. 1b

Eq. 1.c

where the indices n1, n2, and p refer to source room, receiver room and panel mode numbers
respectively and β is the generalized modal damping coefficient introduced for the acoustic volumes
and structural modes. Φ and w represent generalized modal velocity potential and normal surface
displacement of the partition respectively (see [2] for the complete definition of the other symbols). w
The spatial structural-acoustic coupling coefficient Cnp is defined by

                                                                         
Eq. 2

where simply-supported edges are assumed for the partition and S is its area.

3.  RESULTS
The models adopted comprised three subsystems: a source room, a common wall and a receiving
room. In ‘model 1’ (Figure 1a) both rooms have the same width and height whereas in ‘model 2’
(Figure 1b) the receiving room is wider than the source room. The source room was defined as an
acoustic volume excited by a broadband acoustic point source placed at a corner position. Although
the source position does not alter the spatial coupling coefficients between structural and acoustic
modes, it has significant influence on exciting the source room modes. Thus, with the source located at
one of the source room corners, all modes within a specific frequency range were excited. The results
obtained from the numerical examples provide information about the sensitivity of the modal model to
parameters, such as the spatial distribution of pressure and particle velocity in the acoustic volumes.
Finally, some results for the modal model are compared to those obtained by different formulations.

The system properties are described as follows. For a partition made of plasterboard material, a value
of υ = 0.24 and E = 2.12x109 N/m2 were assumed for the Poisson’s ratio and Young’s modulus
respectively. Also a density value of ρs = 806 kg/m3 and a thickness of 0.01 m [21] were assumed for
the material. On the other hand, for a partition made of steel, a value of υ = 0.24 and E = 210x109

N/m2 were assumed for the Poisson’s ratio and Young’s modulus respectively. Also a density value of
ρs = 7850 kg/m3 and a thickness of 0.01 m [21] were assumed.

The assumption of only pure bending waves propagating in the panel remains valid as the panel
thickness is much smaller than the wavelength at the highest frequency considered herein. When
varying the other parameters, the receiving and source room surfaces were considered as being
covered by a soft material with a constant modal frequency-average absorption coefficient. The loss
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factor for the rooms was chosen as a constant value η = 0.01 over the whole frequency range. The
corresponding T60 that results using this constant loss factor is plotted in Figure 2.4.

In ref. [5] typical values for the absorption properties of a room are presented. If one used these
absorption values the corresponding loss factor values η would vary from 0.001 to about 0.1 for some
commonly used materials in buildings. An important approximation to note here is that the mode
functions used have been chosen as the mode shapes of a volume bounded by rigid walls and that
absorption has been introduced via a modal description, rather that involving a complex wall
impedance in the model. The latter is much more complex and is unnecessary in the present case of
rooms with low absorption; both models would produce similar results. Moreover, the acoustic source
strength applied to the source room was a volume velocity equal to 3x10-5 m3/s. The source was placed
at the corner of the room for all of the simulations presented. The Noise Reduction (NR) parameters
obtained from the modal and classical approaches [2, 6] were compared graphically as a function of
frequency. It was verified in ref. [6] that Leppington’s prediction approaches the values obtained from
the infinite plate theory when the non-resonant transmission is modelled.

Figures 2 and 3 show the mean square sound pressure and particle velocity distribution (in the x
direction normal to the panel) with respect to the horizontal plane y = 1m at 120 Hz. Figure 2a and 3a
show the surface plot for the pressure and particle velocity respectively. It is observed that there is
pressure discontinuity at the interface coordinate x = 0 (where there is a flexible partition in the whole
common wall) as expected. On the other hand, the particle velocity just goes to zero at the interface.
The results are also not constant across the crosssection or symmetric, due to the source location being
positioned in one corner of the room (- 5,0,0) and the frequency being above the first acoustic mode
with a half-wavelength across the section (85 Hz). Figures 2b and 3b show the corresponding contour
levels.

Figures 4 and 5 show the NR values for models 1 and 2 respectively. Partitions with mass per unit area
equal to 8.1 kg/m2 and 78.5 kg/m2 were considered. Critical frequencies equal to 3815 Hz and 1196 Hz
were obtained for the light and heavyweight partitions respectively. In Figure 4-a and 4-b it is seen
that at very low frequencies (below 100 Hz), differences of up to about 20 dB occurred between the
modal model and the diffuse incidence Mass Law. In this situation, the dimensions of the subsystems
were small in comparison with the wavelength of the sound. Thus, for this condition the motion of the
medium in the system is analogous to that of a mechanical system having lumped mechanical
elements of mass, stiffness and damping. The lowest NR values shown in Figures 4-a and 4-b are in
the one third octave frequency bands with centre frequencies at 8 Hz and 12.5 Hz respectively. For the
lightweight partition, this value approximately corresponds to the coupled frequency 9.02 Hz. For the
heavyweight partition (Figure 4-b), the lowest NR value corresponds to the coupled frequency equal to
12.53 Hz. It is seen that this frequency is the coupled version of the fundamental natural frequency of
the heavyweight partition, which is equal to 12.08 Hz. It is well known that if a coupled system is
excited acoustically and the acoustic volume responds predominantly as though the structure were
infinitely rigid, this system is said to be weakly coupled. Therefore, the results confirmed the theory
that ‘weak coupling’ effects occur in models with heavyweight partitions.

Moreover, at very low frequency the flexible partition behaves as a rigid-body and the resulting
stiffness element is expressed by the acoustic bulk stiffness of the enclosed fluid in the room. The
acoustic bulk stiffness is given by ; where  SA is the room transverse area (height x
width) and VA is the volume of the acoustic room. In this case, the coupled frequency can be estimated
by considering a one-degree-of-freedom mass-spring system. This simplified model consists of a
structural mass connected to two ‘springs’ corresponding to both acoustic rooms. The natural
frequency of free vibration of this simplified model was estimated and is approximately 15.5 Hz. For
the 1/3 octave bands with centre frequencies above 100 Hz, the NR values shown in Figure 4-a tend to
those obtained via Leppington’s prediction. In other words, the trend of the curve for the modal model
approximates the established values, which consider the resonant and non-resonant contributions at
higher frequencies. This is justified by the fact that the ‘Schroeder frequencies’ [5] were
approximately 298 Hz and 383 Hz for the source and receiving rooms respectively. Nevertheless, for
the heavyweight partition Figure 4-b shows that the NR values are closer to the diffuse field Mass Law
at higher frequencies.
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Figure 5 shows the NR values obtained for model 2 (Figure 1-b). In Figure 5-a, the variation of the
modal model from the Mass Law and Leppington’s formulation at low frequencies is less pronounced
than that for model 1 shown in Figure 4-a. This is due to the fact that model 1 (Figure 4) has exactly
coincident resonance frequencies for the two rooms e.g. at 34, 68 and 85 Hz. In addition, there is
geometric matching of modal distribution over the common partition. On the other hand, the NR
results presented in Figure 5 show the effects of mismatch of modal properties of rooms having
dissimilar geometrical characteristics. As the frequency increases, the results tend to the values
calculated via the Leppington’s approach. By comparing Figures 4 and 5, it is also evident that at
higher frequencies the effect of room shape on NR is not so significant. For instance, in the frequency
band with centre frequency at 400 Hz, a difference of less than 2 dB is found between models 1 and 2.

Finally, it is seen that in both configurations (Figures 4 and 5) the values obtained via Leppington’s
formulation approximated to those using the field incidence Mass Law when the frequency increases.
These results may be explained by the fact that the resonant contribution, which is taken into account
in Leppington’s formulae, was not significant within the frequency range considered, where the forced
non-resonant vibration contribution is the dominant factor. Furthermore, for the heaviest partition the
diffuse field Mass Law is about 3-6 dB lower than Leppington’s or the field incidence Mass Law
values at frequencies greater than 100 Hz.

Figure 2: Normalized mean square pressure distribution (model 1) with respect to the horizontal
plane y = 1 m at 120 Hz. The partition dimensions and mass per unit area are 2m x2m and 8.1

kg/m2 respectively. a) surface plot; b) Contour levels in (Pa2/Pa2);

Figure 3: Normalized mean square particle velocity distribution (model 1) in the x-direction
with respect to the horizontal plane y = 1 m at 120 Hz. The nominal partition dimensions and

mass per unit area are 2m x 2m and 8.1 kg/m2 respectively. a) surface plot; b) Contour levels in
(m/s)2/(m/s)2;
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Figure 4: Comparison of the Noise Reduction (NR) levels between the modal model 1 (see Figure
2a) and the classical methods. a) ρh = 8.1 kg/m2; b) ρh = 78.1 kg/m2; _____ Modal model;     ***

Diffuse incidence Mass Law; +++ Field incidence Mass Law;  Leppington’s prediction.

Figure 5: Comparison of the Noise Reduction (NR) levels between the modal model 2 (see Figure
2-b) and the classical methods. a) ρh = 8.1 kg/m2; b) ρh = 78.1 kg/m2; _____ Modal model; ***

Diffuse incidence Mass Law; +++ Field incidence Mass Law; ... Leppington’s prediction.

4.  CONCLUSIONS
A comparison between numerical modal analysis and theoretical predictions has been performed. A
maximum frequency of 450 Hz was used for the frequency response of the systems to a volume
velocity point excitation in the source room. Above this frequency limit the computational storage
requirements for variables as well as the operational running time on a personal computer became
extremely problematic. The effect of being selective in eliminating some modal contributions has not
been reported here. This is because the results are highly sensitive to the non-resonant modes in the
frequency range considered. For instance, the non-resonant mass modes of the partition significantly
contributed to the energy transmission between rooms. This is evident from the results, which
approximates to those for the Mass Law as frequency increases. Although there were many ‘weak
coupling coefficients’, their summation was significant to the total coupling. In ref. [7], it is show that
the contribution of certain modes to the fluid-structure interaction depends on the degree of spatial
coupling between the modes at the common interface. Hence, all possible natural frequencies and their
respective modes were included in this analysis. The results may also help in the understanding of the
model, with the subsystems considered directly related to physical elements such as rooms and
flexible partitions. They can also provide an initial discussion for the investigation of a SEA model,
which can be useful for practical building acoustics.
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Although this problem (the coupling between the panel and the acoustic fields) has been solved in
previous work by several authors, the results obtained herein can also be used for guidance in real
cases of architectural acoustic design. All the parameters, which affected the modal composition of the
sound field in the subsystems, were fundamental in the determination of the Sound Reduction Index.
The results may also be used to interpret measurements made in-situ at low frequencies, e.g. where the
classical definition of SRI in ISO140 for diffuse sound fields may not be appropriate or reliable.
Although the assumption of uncoupled ‘rigid-walled’ acoustic modes for the rooms [1, 2] has been
assumed for many years, the actual boundary condition, which is due to the velocity of the partition,
cannot be replicated. The convergence problem may be rather sensitive at low frequencies and may
require a significant summation of modes to provide accurate velocity and pressure predictions at the
panel location. This is necessary for accurate predictions of the acoustic intensity and hence Sound
Reduction Index.

Existing methodologies, i.e. the Mass Law and Leppington’s formulation, similarly have difficulty at
low frequencies. For instance, the assumption of diffuse field, etc., is no longer valid at very low
frequencies, as few acoustic modes exist in the volumes. However, it has been shown that the SRI
values obtained using the Modal model converged reasonably well to Leppington’s prediction as the
frequency increases. If one is interested in the Noise Reduction and hence requires spatially averaged
acoustic pressures, then the methodology of using the modal method with ‘rigid-walls’ is acceptable
and provides good results. This statement can be confirmed by the fact that the results obtained
converged to the established and accepted analytical models as frequency increases.
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