
SOLUTION OF INTERNAL LAMINAR FLOWS THROUGH CFD: 
MULTIGRID METHOD FOR CONVERGENCE ACCELERATION 

José Antonio Rabi 
Faculdade de Engenharia Civil – PUC Minas / Poços de Caldas 

Av. Pe. Francis Cletus Cox, 1661, Jd. Country Club, Poços de Caldas, 37701-355, MG, Brazil 
tel: +55 35 3697-3000, fax: +55 35 3697-3001, e-mail:jrabi@pucpcaldas.br 

 

ABSTRACT 

Air flow modeling and simulation are important for HVAC&R design and optimization. 
Nevertheless, if detailed and accurate information is desired, fine meshes should be used, which tends 
to increase the computational effort. Multigrid methods are known to reduce such effort and a 
preliminary V-cycle correction-storage multigrid program is under development in order to 
numerically solve steady-state two-dimensional laminar flows. Structured, orthogonal and irregular 
meshes are employed following a finite-volume discretization. As a first trial, a given simple laminar 
flow problem was considered. The corresponding flow pattern is qualitatively checked out and 
residue reduction histories are presented. 

1. INTRODUCTION 

Numerical methods have been used to solve fluid mechanics and heat transfer problems and solutions 
so obtained have proved to be reliable, even in rather complex instances. Computational Fluid 
Dynamics (CFD) programs have been extensively developed thanks to low cost, large memory 
capacity and fast computers in conjunction with efficient and precise numerical methodologies 
(MALISKA, 1995). 

Computational simulation is already incorporated to thermal comfort problems (BARROS et al., 
2001; CUNHA et al., 2001; MÁXIMO and BERTE, 2001; MENDES and CELINSKI, 2001; 
MORAES and LABAKI, 2001; SCHMID, 2001). As far as ventilation is concerned, air velocity 
fields might be properly achieved by means of CFD (FERNÁNDEZ and EGUÍA, 2001; LÔBO and 
BITTENCOURT, 2001). Nevertheless, computing time should not be prohibitive if high accuracy is a 
desired feature. 

Accordingly, a CFD program has been developed in Fortran-90 so as to provide numerical solutions 
of internal flow problems. At its present stage, the CFD method employed finite-volume formulation, 
SIMPLE pressure-velocity coupling and multigrid convergence acceleration. This paper compares the 
CPU time (i.e. computational effort) needed by the program to solve a given steady-state laminar two-
dimension flow employing different numbers of computational grids. 

2. AIR FLOW MODELING AND SIMULATION 

Modeling and simulation play an important role in design and optimization, particularly in those 
cases for which analytical do not apply or experimental methods are somewhat unfeasible. In 
principle, a comprehensive mathematical model and its corresponding computational program should 
cover important phenomena of the process. In view of that, design parameters should be confidently 
predicted and experimental data should be reproduced within acceptable levels of accuracy. 
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2.1 Space and Time Orders of a Mathematical Model 

Depending on its degree of sophistication, output data provided by a simulation model may vary from 
a set of global parameters up to a detailed (point-to-point) description of physical quantities of 
interest (e.g. temperature, pressure, moisture content) within a three-dimensional transient flow field. 

Zero-order models consider no space-dependent equations to evaluate internal processes. First-order 
models take into account one-dimension variations inside the process. Second-order models should be 
evoked when variations along another dimension cannot be neglected. Due to inherent complexities, 
third-order models are less often adopted, although a great deal of information about the process 
might be obtained if all space coordinates are successfully regarded. 

If time variations are considered, the model is dynamic; otherwise it is based on a steady-state 
approach. Particularly in thermal comfort problems, a (24-hour) periodic regime may be adopted. 

2.2 Transport Phenomena Equations 

HVAC&R problems may be tackled as transport phenomena applications. Whereas air flow is 
governed by the continuity and Navier-Stokes equations, moisture transfer is modeled by Fick’s law. 
Since heat transfers are usually present, the first law of thermodynamics should also be evoked. 
Despite such transport processes occur simultaneously, it is convenient to split them up for the sake 
of formulation and solution. As the corresponding differential equations are coupled, analytical 
solutions are rare (if not impossible!). Simplifying assumptions should be carefully introduced so as 
to prevent the problem from moving away from reality, jeopardizing the quality of the numerical 
solution. 

Governing equations for mass, momentum and energy conservation principles may be put into a 
mutual form known as the general transport equation (GTE). If  φ  and  t  represent the intensive 
property being transported and time respectively, the GTE for a Cartesian coordinate system (x, y, z) 
is expressed as: 
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where  ρ  is the fluid density,  Γφ  is the diffusion coefficient,  Sφ  includes non-diffusive source (or 
sink) terms and  vx ,  vy  and  vz  are the Cartesian components of the velocity vector  vr . 

Conservation equations are obtained by suitably replacing  φ ,  Sφ  and  Γφ  in Eq. (1), a procedure that 
depends on the flow regime. Table 1 summarizes the substitutions for a typical two-dimension 
laminar incompressible Γφ-constant flow. It is worth remembering that all z-direction terms are 
dismissed. 

Table 1. Terms to be replaced into the GTE for two-dimension laminar incompressible flows. 
Conservation equation φ Γφ Sφ 

bulk mass 1 0 0 

x-momentum vx µ 
x
p

∂
∂

−  

y-momentum vy µ 
y
p

∂
∂

−  

energy T λ / cp ST 

i-component mass Ci ρ Di,M Si 
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In the momentum equations,  µ  is the fluid viscosity and  Sφ  includes the pressure gradient. In the 
energy equation,  T  is the temperature,  Γφ  relates the fluid thermal conductivity  λ  to its constant-
pressure specific heat  cp  and  ST  retains external energy source or sink terms (e.g. solar radiation). 
For the i-component mass transport,  Ci  and  Di,M  are respectively its concentration and diffusivity 
within the mixture while  Si  comprises external mass sinks or sources (e.g. chemical reactions). 

Although the conservation principles apply to any sort of problem, they cannot alone describe 
distinctive physical behavior of a given material. For that reason state equations are required. From a 
mathematical viewpoint, that comes from the fact that the number of unknowns exceeds the number 
of equations. For a compressible flow, an additional state equation is needed, which could be of the 
kind: 

 ),( Tpρ=ρ  (2) 

Hence, for the five unknowns  ρ ,  vx ,  vy ,  p  and  T  there should be five equations (mass,  x  and  y  
momentum, energy and state). For turbulent flows, different definitions for  φ ,  Sφ  and  Γφ  are 
needed (MALISKA, 1995). Moreover, a turbulence model should be evoked as for instance the 
turbulent kinetic energy / dissipation model, also simply referred to as the  k-ε  model (WHITE, 
1991). 

3. NUMERICAL SOLUTION OF FLOW PROBLEMS 

The choice among the various modeling orders should be based on necessity, since sophistication 
does not guarantee quality. Conversely, too much simplicity may lead to false hypothesis about the 
flow. Anyhow, a model has no use if it cannot reproduce experimental data. Numerical simulation of 
velocity flow fields is a complex task, even for steady-state regimes, disregarding moisture and heat 
transfers (last two lines in Table 1). If such conditions are met as a first approach, substitution of the 
first three lines of Table 1 in the GTE, Eq. (1), results in the following system of coupled differential 
equations: 
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3.1 Finite Volume Formulation 

Since the CFD simulator is at an initial stage, the present work considered the two-dimension pilot 
flow geometry sketched in Fig. 1a. The corresponding boundary conditions are also shown. The 
finite-volume method divides the solution domain into a number of rectangular control volumes 
(CVs). Should these CVs have different sizes, the resulting mesh would be structured, orthogonal and 
non-uniform. 

Following a cell-centered scheme, grid points occupy the CV geometric center, as sketched in Fig. 
1b. Storing the numerical values for the velocity components  vx  and  vy  and for the pressure  p  at 
these points is what characterizes a collocated arrangement. 

Algebraic equations were obtained after integrating Eqs. (3), (4) and (5) over the CV sketched in Fig. 
1b. Noting that  δV = δx δy  and based on the GTE, Eq. (1), such integration is generally expressed 
as: 
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Figure 1. Sketch of (a) the laminar flow simulated and (b) a typical CV to perform 

discretization. 

Interface values were taken as being those in the middle of the CV interface. For that reason, 
integration of convective (on the left-hand side of the previous equation) resulted in: 

 Ce φe − Cw φw + Cn φn − Cs φs (7) 

Convective mass fluxes across the CV interface were evaluated as 

 Ce = (ρv x)e δy       ,       Cw = (ρv x)w δy       ,       Cn = (ρv y)n δx       ,       Cs = (ρv y)s δx (8) 

The Flux Blended Deferred Correction (FBDC) scheme was used to perform internodal interpolation 
for convective terms (KHOSLA e RUBIN, 1974). In such scheme, interface values are approximated 
as a linear combination of Central Difference Scheme (CDS) and Upwind Difference Scheme (UDS) 
values: 
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CDS
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where the starred (*) quantities in the last expression come from the previous iteration and  φ  stands 
for  vx  or  vy . The combination factor  ζ  may vary from 0 (pure UDS) to 1 (pure CDS). 

Integration of the diffusive fluxes in Eqs. (4) and (5) having in mind that  Γφ = µ  resulted in: 
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CDS was again used to discretize the gradients in the above equation, namely: 
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Interface pressure values resulting from the integration of source terms in the momentum equations 
were obtained by linear interpolation or extrapolation of neighboring grid point values. 
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3.2 Algebraic Equations 

Introducing all the discretizations previously described in the integrated GTE, Eq. (6), the following 
algebraic equation may be obtained after some manipulation: 

 aP φP  =  aW φW  +  aE φE  +  aS φS  +  aN φN  +  b (12) 

whose coefficients are given by: 
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As an illustration, the diffusive flux through the east interface (“e” in Fig. 1b) is evaluated as: 
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The independent term  b  receives contributions from source terms (pressure gradients) as well as 
from the FBDC scheme terms (RABI, 1998). 

As the program is running in a preliminary version yet, pressure-velocity coupling is not 
accomplished by means of a state equation, like Eq. (2), but following the Semi-Implicit Method for 
Pressure-Linked Equations (SIMPLE) algorithm (PATANKAR e SPALDING, 1972). 
Mathematically, an algebraic equation for  p  similar to Eq. (12) is achieved, whose source term is 
related to the mass imbalance from the continuity equation since approximated velocity fields are 
provided from the momentum equations. 

3.3 Multigrid Method 

Locating a CV via indexes  i  and  j  for  x  and  y  directions respectively, Eq. (12) can be written as: 

 aP φij  −  aW φi−1j  −  aE φi+1j  −  aS φij−1  −  aS φij+1  =  bij (15) 

Assembling the above equation for each CV in the solution domain results in an system of the form: 

 Ak Φk  =  Bk (16) 

where  Ak  is the coefficient matrix,  Φk  is the unknown matrix and  Bk  stores all source terms. Index  
k  refers to a given grid level with  k = 1  corresponding to the coarsest grid and  k = M  to the finest. 

Iterative methods may be used to solve (i.e. relax) Eq. (16). To visualize some flow details, well-
refined meshes are needed, which tends to augment the computational effort. In classical methods 
(Jacobi, Gauss-Seidel, TDMA), convergence rates of the numerical solution are greatest at the 
beginning of calculations, slowing down sensibly as the iterative process goes on. 

A spectral analysis reveals that any smoothing algorithm is capable of reducing efficiently only those 
Fourier error components whose wavelengths are smaller than or comparable to the mesh spacing 
(HACKBUSCH, 1985). In order words, after a while only low wavelength error components are 
indeed reduced and time increase is due to a weak smoothing behavior of large wavelength error 
components. 

To overcome this drawback, the multigrid technique uses a sequence of grids of increasing coarseness 
instead of iterating at a single grid. In doing so, a broader wavelength spectrum may be covered as 
long wavelengths in a fine mesh become smaller in a coarse one, where they can then be smoothed. 
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Hence, in each grid level, the corresponding error components are efficiently reduced, accelerating 
convergence. 

After the equation system has been relaxed by a small number of iterations, an intermediate value  
Φ′k  is obtained along with its correction  φk = Φk − Φ′k . Defining the residue as  rk = bk − AkΦ′k , it 
is possible to show (HACKBUSCH, 1985) that  φk  is the solution of the following equation system: 

 Ak φk  =  rk (17) 

This previous system can be better approximated as a coarser grid equation: 

 Ak−1 φk−1  =  rk−1          ,     with     k
1k

k1k rr −
− = I  (18) 

The restriction operator  1k
k

−I   takes values from grid  k  to grid  k−1 , as sketched in Fig. 2a. Once 
the correction approximation  φ′k−1  has been obtained, the prolongation operator  k

1k−I   takes it back 
to the immediate finer grid, as suggested by Fig. 2b, so as to refine the intermediate value  Φ′k  
according to: 

 Φk
new = Φ′k + φ′k          ,     with     φ′k = k

1k−I φ′k−1 (19) 

 
Figure 2. Sketch of (a) restriction and (b) prolongation operations. 

The residue restriction, as suggested in Eq. (18), is accomplished by summing up the residues of the 
four fine grid CVs that compose the corresponding coarse grid CV. Mathematically: 

 1j+ 1+i
k

j 1+i
k

1j+ i
k

j i
k

J I
1k rrrrr +++=−  (20) 

Prolongation is achieved by bilinear interpolation. A temporary intermediate mesh between the coarse 
and fine grids store values resulting from the application of Ik

k
−1  along a single coordinate. 

Afterwards, the Ik
k
−1  operator is applied over those temporary grid points along the remaining 

orthogonal direction. 

Coefficients in matrix  Ak  contain diffusive and convective contributions that need special treatment 
when changing grid level. Diffusive terms are fully recalculated since they depend upon grid 
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geometry (internodal distances and CV dimensions). Fine grid mass fluxes (convective terms) are 
summed up at the CV faces in order to compose the corresponding coarse grid mass flux. 

The sequence as how all previous operations are concatenated through all existing  k-values (i.e. grid 
levels) distinguishes the so-called V-cycle from the W-cycle. Figure 3 compares these two multigrid 
cycles for a 4-grid iteration where  s = pre-smoothing,  r = restriction,  cg = coarsest grid iteration  
and  p = prolongation (post-smoothing iterations are not pictured for simplicity). 

 
Figure 3. Sequence of operations in a 4-grid iteration: V-cycle and W-cycle. 

4. NUMERICAL RESULTS 

In order to keep the flow sketched in Fig. 1a under laminar regime, a 1.0 kg/m3 density and 10−4 
kg/m⋅s viscosity fluid was adopted, having an inlet velocity of 0.01 m/s. A three-grid method was 
employed; the finest mesh having NI = 128 CVs along the x-direction and NJ = 96 CVs along the y-
direction. Pure UDS (ζ = 0) was employed as interpolation scheme and the number of pre-smoothing, 
post-smoothing and coarsest grid iteration was fixed at one in a V-cycle strategy. 

The numerically obtained flow field can be qualitatively visualized in Fig. 4a. The reduction histories 
of velocity and pressure normalized residues for both the three-grid (3g) and single-grid (1g) 
solutions are pictured in Fig 4b. Such residues are calculated and normalized according to 
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Figure 4. (a) Three-grid solution visualization; (b) residue reduction histories for  vx ,  vy  and  p . 

5. CONCLUSION 

Comprehensive modeling of HVAC&R problems may evoke the continuity equation, the Navier-
Stokes equations, Fick’s law and the first law of thermodynamics. The mathematical complexity may 
be further extended if turbulence and transient phenomena should be taken into account. For 
problems like the boundary layer over vertical walls, knowledge of detailed flow behavior is crucial 
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for the understanding of the whole building thermal performance. In such instances, the analyst may 
rely on CFD programs. 

A V-cycle correction-storage multigrid CFD Fortran-90 program has been initiated and the numerical 
solution of a two-dimension laminar steady-state internal flow problem was attempted as a first round 
test. The numerical method also included finite-volume discretization and the SIMPLE pressure-
velocity coupling on structured, orthogonal and non-uniform meshes. 

As far as computational effort (CPU time spent) is concerned, results showed a better performance 
(i.e., convergence speed up) of the three-grid solution against the single-grid counterpart without 
qualitatively jeopardizing the flow field pattern. This is a desired feature if the computational 
simulator is to be extended to cover HVAC&R problems in a more comprehensive way so as to 
include turbulence as well as heat and moisture transfers that could in principle slow down the 
numerical convergence. 

Accordingly, short-term new features of the mathematical model and its corresponding CFD 
simulation program should include a state equation (e.g. ideal gas) and a turbulence model (e.g. 
mixing length or k-ε) so as to describe properly the internal air flow behavior. Long-term inclusions 
refer to mass transfer modeling (i.e. moisture considered) and coupling with external thermal 
phenomena. 
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